
When it comes to open source software security, many organizations rely heavily on software
scanning (often called software composition analysis or SCA) as the primary means of defense.
While scanning helps protect against known vulnerabilities reactively, leading organizations today
are adding proactive defenses that help them make better decisions about which open source
packages to bring into their supply chain in the first place.

Is the project abandoned or
is it actively maintained and
receiving fixes?
Using unmaintained projects means
potential future issues will not be fixed.

Is the project deprecated?
Using deprecated projects means
potential future issues will not be fixed.

Who are the maintainers and
how many maintainers are
behind the project?
The more you know about the
maintainers and their projects, the better.
Knowing there are multiple maintainers is
a good sign for continued maintenance.

Who has publishing rights on
upstream package managers?
This helps ensure only approved
maintainers are contributing code.

Does the project have security
practices such as multi-factor
authentication in place?
This provides an extra layer of security
to ensure only authorized maintainers
are able to access code.

What is the version history and
which is the recommended
version?
This helps you make good decisions about
which version to use and ensure you’re
using a version that aligns with your
organization’s policies.

Is the project or release impacted
by any existing vulnerabilities?
This minimizes new vulnerabilities entering
your organization’s software development
lifecycle.

What are the associated project
and release dependencies?
Understanding a project’s transitive
dependencies helps you avoid accidentally
bringing in a vulnerability from a package
dependency.

Is the license compatible with your
organization’s legal guidelines?
Checking the package’s license to ensure it
aligns with your organization’s policies helps
avoid unnecessary legal risk.

The easiest way to avoid having to replace problematic
open source dependencies is to not bring them in at all.

Does the project have a history
of responding to security and
other issues?
This helps you understand the
maintainers previous track record
responding to security issues.

10 questions you should answer before
using a new open source project

Tidelift is the only solution
in the market that ensures
maintainers meet these
standards. Schedule a demo
to see the secure software
supply chain we're building.

PROTECT AGAINST
CURRENT RISK
Identify and resolve known
issues and vulnerabilities in
the open source packages
your organization uses.
BENEFIT
Harden defenses by closing
off attack vectors that have
already been identified.

PROTECT AGAINST
FUTURE ISSUES
Identify which open source
packages your organization
uses follow secure software
development practices.
BENEFIT
Ensuring the work is done
minimizes the likelihood of
being impacted by issues in
the first place.

PROACTIVE

REACTIVE

https://en.wikipedia.org/wiki/Software_composition_analysis
https://blog.tidelift.com/how-tidelift-open-source-intelligence-data-makes-your-supply-chain-healthier-and-more-secure?hs_preview=aAIzbtQL-142187223631

